_       _       
  (_) ___ | |_ ____
  | |/ _ \| __|_  /
  | | (_) | |_ / / 
 _/ |\___/ \__/___|
|__/               

Impedance and phasors cheat sheet

Element Resistor Inductor Capacitor
v-i relationship $v = iR$ $v=L\frac{\text di}{\text dt}$ $i=C\frac{\text dv}{\text dt}$
impedance $Z_R = R$ $Z_L = j \omega L$ $Z_C = \frac{1}{j \omega C} = j\frac{-1}{\omega C}$
reactance $X_R = 0$ $X_L = \omega L$ $X_C = \frac{-1}{\omega C}$

where

variable quantity number type SI unit unit abbreviation
$v$ instantaneous voltage real volts [V]
$i$ instantaneous current real amps [A]
$R$ resistance real ohms [Ω]
$L$ inductance real henrys [H]
$C$ capacitance real farads [F]
$Z$ impedance complex ohms [Ω]
$X$ reactance real ohms [Ω]

Phasors

A phasor is a complex value that represents a sinusoidal voltage or current.

Phasors are used to analyse circuits in which:

To analyse an AC circuit using phasors,

Ohm's law for phasors:

$$ V = IZ $$

where

Equivalent impedance of two impedances in series:

$$ Z_{eq} = Z_1 + Z_2 $$

Equivalent impedance of two impedances in parallel:

$$ \frac{1}{Z_{eq}} = \frac{1}{Z_1} + \frac{1}{Z_2} $$

ZIPPOS: Z's In Parallel? Product Over Sum!

$$ Z_{eq} = \frac{Z_1Z_2}{Z_1 + Z_2} $$

MATLAB / Octave example phasor calculation

% frequency [Hz] and angular frequency [rad/s]
f = 50;
w = 2*pi*f;

% Elements
R = 1e3;
C = 220e-9;

% Input voltage (reference phasor)
Vs = 230;

% Impedances
Zr = R;
Zc = 1/(j*w*C);

Zeq = Zr + Zc;

% Calculate voltage and current phasors
I = Vs / Zeq;
Vr = I*Zr;
Vc = I*Zc;

% Display rms amplitude, peak amplitude and phase angle for each phasor
I_rms = abs(I)
I_pk = sqrt(2) * I_rms
I_phase = angle(I)

Vr_rms = abs(Vr)
Vr_pk = sqrt(2) * Vr_rms
Vr_phase = angle(Vr)

Vc_rms = abs(Vc)
Vc_pk = sqrt(2) * Vc_rms
Vc_phase = angle(Vc)